Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression.

نویسندگان

  • Madeleine J Oudin
  • Oliver Jonas
  • Tatsiana Kosciuk
  • Liliane C Broye
  • Bruna C Guido
  • Jeff Wyckoff
  • Daisy Riquelme
  • John M Lamar
  • Sreeja B Asokan
  • Charlie Whittaker
  • Duanduan Ma
  • Robert Langer
  • Michael J Cima
  • Kari B Wisinski
  • Richard O Hynes
  • Douglas A Lauffenburger
  • Patricia J Keely
  • James E Bear
  • Frank B Gertler
چکیده

UNLABELLED Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here, we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and MENA, an actin regulator, and involves increases in focal complex signaling and tumor cell-mediated extracellular matrix (ECM) remodeling. Compared with MENA, higher levels of the prometastatic MENA(INV) isoform associate with α5, which enables 3-D haptotaxis of tumor cells toward the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MENA(INV) and FN levels were correlated in two breast cancer cohorts, and high levels of MENA(INV) were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM-guided directional migration. SIGNIFICANCE Here, we provide new insight into how tumor cell:ECM interactions generate signals and structures that promote directed tumor cell migration, a critical component of metastasis. Our results identify a tumor cell-intrinsic mechanism driven by the actin regulatory protein MENA that promotes ECM remodeling and haptotaxis along FN gradients. Cancer Discov; 6(5); 516-31. ©2016 AACR.See related commentary by Santiago-Medina and Yang, p. 474This article is highlighted in the In This Issue feature, p. 461.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ignoring matrix boundaries when the LKB1 master kinase is gone

Gradients of soluble attractants as well as extracellular matrix (ECM) proteins serve as cues for directional cell movement. Such "chemotaxis" and "haptotaxis" steers migration of cells during embryonic development, wound healing, and immune responses. In this issue, Chan et al. (2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201404067) show that the tumor suppressor LKB1 controls haptotaxis...

متن کامل

Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis

Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...

متن کامل

Biomechanical Remodeling of the Microenvironment by Stromal Caveolin-1 Favors Tumor Invasion and Metastasis

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-depen...

متن کامل

A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks.

It is commonly assumed that somatic evolution drives the multi-step process that produces metastatic cancer. But it is difficult to reconcile the inexorable progression towards metastasis in virtually all carcinomas and the associated complex change of cancer cell phenotype, characterized by an epithelial-to-mesenchymal transition, with the random nature of gene mutations. Given their irreversi...

متن کامل

Extracellular matrix components in breast cancer progression and metastasis.

The extracellular matrix (ECM) is composed of highly variable and dynamic components that regulate cell behavior. The protein composition and physical properties of the ECM govern cell fate through biochemical and biomechanical mechanisms. This requires a carefully orchestrated and thorough regulation considering that a disturbed ECM can have serious consequences and lead to pathological condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer discovery

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2016